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Summary. Multilocation trials are important for the 
CIMMYT Bread Wheat Program in producing high- 
yielding, adapted lines for a wide range of environments. 
This study investigated procedures for improving predic- 
tive success of a yield trial, grouping environments and 
genotypes into homogeneous subsets, and determining 
the yield stability of 18 CIMMYT bread wheats evaluat- 
ed at 25 locations. Additive Main effects and Multiplica- 
tive Interaction (AMMI) analysis gave more precise esti- 
mates of genotypic yields within locations than means 
across ,replicates. This precision facilitated formation by 
cluster analysis of more cohesive groups of genotypes and 
locations for biological interpretation of interactions 
than occurred with unadjusted means. Locations were 
clustered into two subsets for which genotypes with pos- 
itive interactions manifested in high, stable yields were 
identified. The analyses highlighted superior selections 
with both broad and specific adaptation. 
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Introduction 

The Bread Wheat Breeding Program of the International 
Maize and Wheat Improvement Center (CIMMYT) aims 
to develop widely adapted, high-yielding, stable germ 
plasm with adequate industrial quality and resistance to 
combinations of disease and abiotic stresses (Rajaram 
et al. 1984). Cooperative multilocation trials, managed by 
national programs, are fundamental in developing and 
identifying such germplasm. 

* To whom correspondence should be addressed 

Interpretation of performance of a number of geno- 
types evaluated in a broad range of environments is al- 
ways affected by genotypex environment interaction 
(GE). Differential genotypic responses to variable envi- 
ronmental conditions, especially associated with changes 
in ranks of genotypes, limit accurate yield estimates and 
identification of superior, stable genotypes. 

Regression and other methods for partitioning the GE 
interaction sum of squares are discusse d by Gauch (1988). 

In multivariate analysis, the response of a genotype in 
E different environments may be conceptualized as a pat- 
tern in E dimensional space, with the coordinate of an 
individual spatial axis being the yield of the genotype in 
one environment. 

Multivariate methods can facilitate interpretation 
of multilocation genotype trials. Ordination techniques 
such as principal components analysis, principal[ coordi- 
nates analysis, and factor analysis often presem a large 
percentage of the original E dimensional variation in a 
few dimensions, and thus may simplify interpretation of 
GE structure. Often, complex relationships among loca- 
tions or among genotypes can be adequately represented 
in a scattergram (Freeman and Dowker 1973; Westcott 
1987). Alternatively, cluster analysis has been used to 
group locations that discriminate among genotypes in 
a similar manner or to summarize patterns of genotypic 
performance across environments (Abou-E1-Fittouh et al. 
1969). The combination of ordination and cluster analy- 
sis is termed pattern analysis (Byth et al. 1976; Shorter 
et al. 1977). 

The Additive Main effects and Multiplicative Inter- 
action (AMMI) procedure with prediction assessment 
was proposed for analysis of two-way tables (Gauch 
1988; Gauch and Zobel 1988). The method integrates 
additive main effects and multiplicative components, ex- 
tracting first the additive main effects and then using 
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principal components  analysis to investigate the GE. 
With the biplot facility from A M M I  analysis, both geno- 
types and locations occur on the same scattergram, and 
inferences about  specific genotype x location combina- 
tions can be made. In  plant  breeding, the method has 
focused upon accuracy of estimates of genotypic yields in 
across-location trials. This has been referred to as yield 
prediction assessment and functions by splitting the data 
into modelling and validation data, with the values ex- 
pected by the model compared with the validation data 
(Gauch and Zobel 1988). 

In this study, complementary statistical procedures 
were applied to a hexaploid wheat (Triticum aestivum L. 
em Thell.) yield trial to: (1) assess the success of genotyp- 
ic yield prediction, (2) form homogeneous subgroups of 
locations and genotypes, and (3) identify stable, high- 
yielding genotypes. 

Materials and methods 

Grain yield data were analyzed from the eighth Elite Selection 
Wheat Yield Trial (ESWYT) in which 18 bread wheat genotypes 
(Table 1) were tested under rain-fed and irrigated conditions. A 
total of 25 locations spanning 15 countries was used (Table 2). A 
randomized complete block design with three replicates was 
employed, and the plot size recommended to cooperators was six 
3-m rows sown 30 cm apart, with the central four rows harvest- 
ed. Variable local checks, which were not always identified, and 
the tetraploid durum wheat check were excluded. 

Statistical analysis 

AMMI analysis. For genotypic yields in across-location trials, 
prediction assessment was conducted using the AMMI method 
(Bradu and Gabriel 1978; Gauch 1988; Gauch and Zobel 1988). 
The AMMI model is 

Y~ = u+o~+Ij+ ~ 2k O~ik 7jk+Eij, 
k=l 

where Y~j is the yield of the ith genotype in the jth environment; 
u is the grand mean; 9z and Ij are the genotype and location 
deviations from the grand mean, respectively; 2 k is the eigen- 
value of the principal component analysis axis k; Chk and ~'jk are 
the genotype and location principal component scores for axis k; 
n is the number of principal components retained in the model; 
and E~j is the error term. 

Data were split into two subgroups: modelling and valida- 
tion data. For each combination of genotype and location, two 
randomly chosen replicates were used to estimate parameters of 
the AMMI model, and the other replicate was used to validate 
the model. Seven models were fitted to the data. The first was the 
AMMI0 model, which estimated the additive main effects (i.e.i 
genotypes and locations) without considering interaction; the 
second, AMMII, combined the main effects from AMMI0 with 
interaction effects estimated from the first interaction principal 
component axis (PCA 1). The third model, AMMI2, considered 
main effects plus two interaction principal components. AMMI3 
AMMI5 included cumulatively one more interaction principal 
component axis. The seventh model (DATA) with 17 PCA axes 
was the full model, which completely specified the data matrix 
and equalled the average of the two replicates selected at random 
for modelling. 

Table 1. Genotypes of the eight ESWYT 

Number Cross or name 

I PRL/VEE # 6 
2 CN079*2/PRL 
3 BUC/GLEN 
4 KAUZ # 1 
5 KAUZ # 2 
6 RRV/WW15/3/BJ/2*ON//BON/4/NAC 
7 GENARO 81 
8 AGA/3*YR 
9 SERI 82 

10 BUC/PVN 
11 KEA/TOW 
12 GLENNSON 81 
13 MON/CROW 
14 BJY/COC 
15 HAHN*2/PRL 
16 R37/GHLlZl//KAL/BB/3/KLT 
17 VEE # 5/PVN 
18 HD2206/HORK 

Table 2. Locations from the eighth ESWYT 

Code Country Location Latitude Elevation 
(~ (masl) 

AK Algeria E1 Khroub 36 640 
AL Algeria Setif 36 1,023 
BJ Bangladesh Joydebpur 24 8 
CA Cyprus Athalassa 35 142 
EG Egypt E1 Gemmeiza 31 8 
ES Egypt Sakha 31 6 
EB Egypt Beni-Suef 29 28 
IL India Ludhiana 31 247 
ID India Delhi 29 228 
JM Jordan Madaba 36 785 
KN Kenya Njoro 0 2,165 
MG Mexico Guanajuato 21 1,765 
MS Mexico Sonora 27 38 
MM Mexico Michoacfin 20 1,517 
NB Nepal Bhairahwa 27 105 
PI Pakistan Islamabad 34 683 
PA Pakistan Ayub 32 213 
SR Saudi Arabia Riyadh 24 600 
SG Sudan Gezira 14 411 
SE Spain Encinar 38 20 
SJ Spain Jerez 37 180 
SC Spain Cordoba 38 110 
SS Spain Sevilla 38 20 
TB Tunisia Beja 37 150 
TC Thailand Chiang Mai 18 820 

Concepts of data division or cross-validation are presented 
for multiple regression by Allen (1971) and Snee (1977), and for 
principal components analysis by Wold (1978) and Krzanowski 
(1983). 

Cross-validation, used in AMMI to measure the success of 
the models, computed the sum of squared differences (SSD) be- 
tween the models' fitted values and the validation data. The root 
mean square predictive difference (RMS PD) was the square root 
of SSD divided by the number of validation observations. 
Smaller values of RMS PD indicated more accurate prediction. 
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Fig. 1. Sequence of statistical analyses 

This procedure was repeated using ten different random selec- 
tions of replicates from the genotype x location matrix, and the 
average RMS PDs over the ten randomizations were calculated 
for each model. 

On the basis of RMS PD, the best model was identified. 
Finally, AMMI estimates for all genotype by location combina- 
tions were generated using this model with three replicates 
(Fig. 1). 

AMMI analysis constituted a preliminary investigation, 
providing predictively accurate yield estimates for input into 
cluster and stability analysis. 

Average rank difference. Genotypes at each location were ranked 
on the basis of their yields. For the i th genotype in thef  h location, 
the absolute value of the rank difference (RD) between any two 
predictive models, e.g. x and y, was defined as 

RDu = (I R:,-- R, I)u , 

where R x and R r were the ranks of models x and y, respectively. 
Then, the average rank difference (ARD) between models x 

and y for all genotypes and locations was: 

ARDxy = (IR~--Rr I)u n~nj, 
i = 1  j 

where n~ and nj were the numbers of genotypes and locations, 
respectively. 

Cluster analysis. Locations and genotypes were clustered using 
the HACLUS program from the University of Queensland, with 
a dissimilarity matrix of squared Euclidean distance and an in- 
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cremental sum of squares fusion strategy (Burr 1970). The first 
two entities to fuse minimize the increment in the within-group 
sum of squares. This process repeats for the second and subse- 
quent fusions so that, at any level of the hierarchy, the within- 
group sum of squares is a minimum. Location main effects were 
removed prior to clustering locations by standardizing the data, 
so that each location had a mean of zero and a phenotypic 
standard deviation of one (Fox and Rosielle 1982). This caused 
location clusters to be largely determined by the relative perfor- 
mance of genotypes within locations and was judged the appro- 
priate transformation for plant breeding purposes. 

Stratified ranking. The stratified ranking technique of Fox et al. 
(1990) was applied to unadjusted means and AMMI estimates. 
The procedure consisted of scoring the number of locations in 
which each genotype ranked in the top, middle, and bottom 
third of trial entries. 

Stability analysis. A spatial model proposed by Westcott (1987) 
and applied to international maize trials (Crossa 1988; Crossa 
et al. 1988a, b; Crossa et al. 1989) was used. 

The spatial method was used for assessing genotypic stabil- 
ity within the two major groups of locations obtained from 
cluster analysis. Locations were ranked in descending order of 
mean yields. For characterizing genotypic stability, principal 
coordinates analysis was performed in cycles. The first cycle 
(cycle 1) included the lowest yielding location, the second cycle 
(cycle 2) included the two lowest yielding locations, and so on, 
terminating with the final analysis based upon all locations in 
the group. For each cycle, a three-dimensional scattergram of 
principal coordinate axes represented the relationships among 
the genotypes. 

Wescott's (1987) measure of similarity between two geno- 
types X and Y, in a given location i is 

SI(XY) = [H~-(X,+ YJ/2]/Hi--Lr , 

where H~ is the highest yielding genotype in location i, L~ is the 
lowest yielding genotype in location i, and X~ and 14 are the 
performances of genotypes X and Y in location i, respectively. 
For more than one location, the similarity between genotypes X 
and Y is the average ofS i (XY ) across locations. This measure of 
similarity between any pair of genotypes indicates their average 
proximity to H~. The analysis determines a point at the center of 
the scattergram with a maximum value for S. High-yielding 
genotypes are close to H~, have small values for S, and are 
represented by points further from the center of the scattergram 
(Crossa 1988). In contrast, low-yielding genotypes are far from 
H~, have large values for S, and are represented by points near 
the center of the scattergram. 

Genotypes that consistently show above average perfor- 
mance throughout the cycles occupy the periphery of the scatter- 
grams. These outliers are the most stable genotypes, even though 
they may occupy different positions in three-dimensional space. 
Genotypes with below average performance are represented by 
points that tend towards the center. 

Results 

A M M I  analysis 

All models  fitted approached  the va l ida t ion  da ta  more  
closely t h a n  the m e a n  of the two model l ing  replicates 
(Table 3). The A M M I I  model  showed the least devia t ion  
from va l ida t ion  da ta  (RMS P D  of 818 kg/ha), thus 
p rov id ing  the best estimates. 
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Table 3. The average RMS PD (kg/ha) for seven models based 
on ten randomizations 

Model RMS PD 

AMMI0 829 
AMMII 818 
AMMI2 839 
AMMI3 850 
AMMI4 855 
AMMI5 862 
DATA 885 

Table 4. Estimated differences in RMS PD and ARD among 
several predictive models and their rank correlations over 18 
genotypes and 25 locations 

Models RMS PD ARD Rank correlation 

AMMI0-AMMII 11 2.88 0.92 
AMMI1-AMMI2 21 2.20 0.94 
AMMI2-AMMI3 1 t 1.45 0.95 
AMMI3-AMMI4 5 1.51 0.96 
AMMI4-AMMI5 7 1.44 0.96 

Table 5. AMMI analysis of variance of the eighth ESWYT 

Source of variation df SS x 10 6 MS x 10 3 

Replicates within L 50 96 1,927 
Treatment 449 7,551 16,819 ** 

Model 81 7 , 2 6 2  89,656"* 
Location (L) 24 7,100 295,871 ** 
Genotype (G) 17 54 3,160 ** 
Interaction PCA 1 40 108 2,687"* 

Residual 368 290 787"* 
Error 850 372 438 

** Significant at 0.01 probability level 

Changes in RMS P D  and in ARD with successive 
addition to the number of principal components axes 
modelled, from zero to five, was quantified (Table 4). Al- 
though the largest change in RMS P D  did not occur 
between A M M I 0  and AMMI1,  the greatest effect on 
ranking was observed here, paralleled by the fact that 
A M M I 0  and AMMI1 exhibited the lowest Kendall 's Tau 
rank correlation (Knight 1966). Changes in the ARD did 
not seem related to changes in RMS PD. The stratified 
ranking procedure presented below showed distinctly 
different genotypic rankings between location groups 
using AMMI1 estimates, whereas for the A M M I 0  model, 
which does not accommodate  interaction and rank 
change, each location would order genotypes identically. 
Thus, moving from the A M M I 0  to the A M M I I  model 
has important  implications for selecting genotypes. Over- 
all, successive addition of axes, after the first which ac- 
counts for the largest fraction of GE variation, showed a 
diminishing effect on ranking. Increasing rank correla- 

tions between consecutive models, from AMMI1 on- 
wards, reflected this trend. 

A significant feature of multivariate models, including 
A M M I  analysis, is that they account for a large propor- 
tion of pattern in the first few dimensions, with subse- 
quent dimensions accounting for a diminishing percent- 
age of pattern and an increasing percentage of noise 
(Gauch 1982, 1988). Often, arbitrary decisions are taken 
with respect to the number of dimensions considered. 
However, the RMS PD provided an objective basis for 
the decision. Our  a priori expectations were that higher 
interaction PCA axes would contribute to genotypic 
yield prediction, but to a negligible degree above a certain 
number of axes. However, the poorer fit to validation 
data of models involving higher PCA axes (AMMI2 to 
AMMI5,  Table 3) suggested that they involve noise, and 
not highly complex interaction among genotypes and 
locations. Noise, or nonsystematic components, of the 
genotype x location interaction reduced the accuracy of 
estimates and were thus considered residual variation, 
even though the axes involved may have been statistically 
significant using an F-test. 

In the A M M I  analysis of variance using three repli- 
cates (Table 5), the treatment sum of squares (SS) was 
partitioned into two components:  96% due to the model 
or pattern (including main effects for genotypes and loca- 
tions and the first interaction PCA) with 81 df, and 4% 
residual or random variation (noise) with 368 df The 
model-validation procedure (Table 3) indicated that the 
4% of the treatment SS allocated to the residual term was 
not of predictive value. 

The root mean square residual (or adjustment) for R 
replicates, L locations, and G genotypes was Residual 
SS/RLG =464  kg/ha or 10% of the grand mean (Table 5). 
This is a measure of the departure of AMMI1 estimates 
from the means across replicates. 

The AMMI1 estimates from two replicates were more 
accurate than the unadjusted means of those replicates. 
For  three replicates, the prediction accuracy could not be 
measured empirically since no validation data remained. 
However, it was assumed that AMMI1 estimates based 
on three replicates were more accurate than those based 
on two replicates. The effect of the A M M I  estimates on 
genotypic means was assessed. 

Within locations, A M M I I  frequently ranked geno- 
types differently than unadjusted means (Table 6), and in 
18 of the 25 cases AMMI1 estimation changed the top- 
yielding entry. For  unadjusted means, 13 genotypes were 
top yielders in at least one location. With AMMI1 esti- 
mates there were only three top yielders, K a u z # 2 ,  
Seri 82, and Hahn * 2/Prl, suggesting that noise in unad- 
justed means elevated some genotypes to first position. 

Studies in maize (Crossa et al. 1990) and soybean 
yield trials (Gauch and Zobel 1989) also showed that 
A M M I I  estimates and unadjusted means led to a different 
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Table 6. AMMI1 estimates (above), unadjusted means (below), and their rank differences (RDij) (in parenthesis) for grain yield 
(tons/ha) of 18 genotypes grown in 25 locations 

Location Genotype 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

1 7.8 8.2 8.0 7.7 7.5 7.9 7.7 7.7 7.9 7.7 8.3 8.0 8.1 8.2 8.4 7.8 7.9 7.9 
7.8 8.3 7.7 6.1 8.1 8.4 8.1 8.8 8.6 6.7 7.9 7.5 8.6 7.1 8.5 7.7 9.1 7.9 
(1) (4) (8) (1) (9) (2) (7) (12) (5.5) (1) (8) (8) (1.5) (12) (4) (1) (9) (0) 

2 5.6 5.9 5.7 5.4 5.3 5.7 5.5 5.5 5.7 5.5 6.0 5.8 5.8 5.9 6.2 5.6 5.6 5.6 
5.2 5.4 5.5 5.5 5.5 5.3 5.5 6.2 6.5 5.0 6.2 5.5 5.9 6.0 6.7 5.5 5.0 5.8 
(3) (11) (1.5) (7) (5) (7) (6.5) (11) (7) (2) (2) (5) (1) (1) (0) (0) (7) (4) 

3 2.2 2.3 2.0 2.3 2.3 2.3 2.3 1.9 2.4 2.0 2.2 2.3 2.0 2.3 2.3 2.1 2.1 2.2 
2.2 2.1 2.1 2.0 1.9 2.6 2.2 1.8 2.3 2.4 2.1 2.1 1.7 2.0 2.2 2.6 2.3 2.7 
(2) (4) (4) (9) (13) (5) (1) (1) (4) (11) (2) (2) (2) (11) (6) (11) (7) (11) 

4 1.4 1.6 1.3 1.5 1.4 1.5 1.5 1.2 1.6 1.3 1.6 1.5 1.4 1.6 1.7 1.4 1.4 1.4 
1.5 1.6 1.0 1.2 1.4 1.6 1.1 1.1 1.8 1.9 1.5 1.6 1.5 2.0 1.4 1.2 1.6 1.4 
(3) (2) (2) (6) (1) (1) (7) (1) (1) (15) (3) (2) (6) (1) (10) (1) O) (2) 

5 5.9 6.1 5.9 5.9 5.9 6.0 5.9 5.7 6.1 5.8 6.1 6.0 5.9 6.1 6.3 5.9 5.9 5.9 
6.0 7.2 6.5 6.7 6.6 4.5 6.0 5.5 5.2 5.0 6.1 5.6 5.5 5.8 6.9 6.1 6.6 5.3 
(2) (1) (8) (10) (12) (11) (2) O) (11) (0) (3) (6) (5) (8) (1) (7) (4) (5) 

6 3.1 3.0 2.5 3.6 3.8 3.3 3.4 2.7 3.5 3.0 2.7 3.1 2.5 3.1 2.9 3.0 3.0 3.1 
2.7 3.2 2.7 3.1 4.0 3.2 3.5 2.5 3.8 3.0 3.8 3.2 2.4 2.8 2.0 3.3 2.4 3.1 
(7) (1) (4) (9) (0) (2) (1) (0) (0) (9) (14) (1) (0.5) (3) (4) (5) (4.5) (2) 

7 3.4 3.2 2.7 3.8 4.0 3.5 3.6 2.9 3.7 3.2 2.9 3.3 2.7 3.3 3.1 3.2 3.2 3.3 
3.5 2.8 2.8 3.9 3.9 4.9 2.1 2.5 4.3 3.5 2.6 3.3 3.4 3.3 2.5 3.9 2.9 2.9 
(0) (4) (5) (2.5) (3.5) (4) (14) (1) (1) (6) (1) (2) (9) (1) (3) (8) (0.5) (3.5) 

8 10.8 10.4 9.7 11.6 12.0 11.0 11.3 10 .1  11.3 10.7 9.8 10.7 9.7 10.5 10.0 10.7 10.6 10.7 
10.6 9.6 9.1 11.8 12.5 10.9 10.9 9.9 11.2 9.4 8.6 11.3 10.8 10.6 11.3 10.7 10.8 11.3 
(7) (2) (0) (0) (0) (2) (5) (0) (2) (7) (~  (3) (8) (0) (12) (1) (2) (3) 

9 7.4 7.4 7.0 7.5 7.7 7.5 7.6 7.0 7.6 7.3 7.2 7.4 7.0 7.4 7.4 7.3 7.3 7.4 
6.7 7.7 6.3 8.3 7.9 7.6 7.5 7.5 7.5 7.3 7.4 7.1 7.2 7.5 7.8 6.9 7.4 7.1 
(8) (4) (0) (1) (1) (0) (4) (9) (6) (2) O) (9) (4) (1) (8) (3) (2) (4) 

10 5.8 6.0 5.7 5.9 5.9 5.9 5.9 5.6 6.0 5.7 5.9 5.9 5.7 6.0 6.1 5.8 5.8 5.8 
6.0 6.0 5.4 6.3 5.9 6.1 6.0 5.9 5.0 6.5 6.5 6.1 5.3 6.6 6.2 5.4 5.2 5.6 
(2) (5) (2) (4) (2) (1) (1) (7) (15) (14.5) (4.5) (1) (1) (1) (4) (1) (4) (2) 

11 6.5 7.0 6.9 6.3 6.0 6.6 6.4 6.6 6.6 6.4 7.2 6.8 7.0 7.0 7.3 6.6 6.6 6.6 
6.9 7.1 7.5 6.9 5.8 7.2 5.7 6.7 6.5 6.4 6.3 7.3 6.6 7.9 7.5 5.9 6.1 6.2 
(6.5) (3) (3.5) (9.5) (1) O) (2) O) (1) (3) (11) (3) (6) O) (1.5) (4) (7) (3) 

12 5.9 5.7 5.2 6.5 6.8 6.1 6.3 5.4 6.3 5.8 5.3 5.9 5.1 5.8 5.4 5.8 5.7 5.9 
5.6 6.1 4.7 6.4 6,6 6.7 6.8 4.8 5.5 6.0 5.5 6.5 5.1 5.6 5.5 4.6 5.8 6.8 
(5) (6) (1) ~)  (3) (2) (1.5) (1) (8.5) (1) (3.5) (3) (2) (2) (0) (8) (2) (5.5) 

13 2.7 3.1 3.1 2.4 2.1 2.8 2.5 2.7 2.7 2.6 3.3 2.9 3.2 3.1 35 2.7 2.8 2.7 
3,5 2.9 3.2 2.2 1.8 2.7 2.1 2.2 2.7 2.9 3.1 2.9 2.9 2.8 3.7 2.7 3.6 3.1 
(11) (3) (2) (2) (0) (3) (1) (3) (2) (7) (3) (2) (7) (6) (0) (3) (6) (5) 

14 8.0 8.2 7.9 8.0 8.0 8.1 8.0 7.8 8.2 7.9 8.1 8.1 7.9 8.2 8.3 7.9 8.0 8.0 
7.7 7.8 7.7 8.2 8.1 7.3 8.4 7.8 8.4 7.3 8.2 8.6 7.9 8.4 8.8 7.8 7.6 8.4 
(3) (8.5) (2) (0) (4) (10) (~  (6.5) (1) (1) (2) (4) (5) (3) (0) (1) (5) (5) 

15 5.5 5.3 4.7 5.9 6.1 5.6 5.8 5.0 5.8 5.3 4.9 5.4 4.8 5.3 5.1 5.3 5.3 5.4 
5.6 5.2 5.1 5.7 6.7 5.3 5.6 4.5 5.8 5.5 4.9 5.4 4.9 4.8 5.4 5.5 5.4 5.1 
(1) (1) (5) (1) (0) (6) (0) (3) (1) (3) (1) (1) (1) (8) (5) (5) (2) (6) 

16 4.7 4.6 4.2 5.1 5.2 4.8 5.0 4.3 5.0 4.6 4.3 4.7 4.2 4.7 4.5 4.6 4.6 4.7 
4.0 5.2 3.6 4.9 5.0 4.7 5.3 4.3 4.9 4.5 4.2 4.7 4.1 5.4 4.3 5.1 4.3 5.3 
(10) (6) (0) (6) (5) (4.5) (1.5) (3) (4) (2) (0) (3.5) (1) (8) (1) (7) (2) (5.5) 

17 3.8 3.9 3.5 3.0 4.0 3.9 3.9 3.5 4.0 3.7 3.8 3.9 3.6 3.9 3.9 3.7 3.7 3.8 
4.0 2.9 3.8 4.6 3.9 4.3 3.9 1.5 4.0 3.2 4.6 4.1 4.4 3.7 3.9 4.3 3.5 3.9 
(3) (10) (4) (2) (8) (1) (4) (0) (7) (1) (11) (3) (13) (8) (6) (9) (2) (0) 

18 4.7 4.4 3.8 5.3 5.6 4.8 5.1 4.1 5.1 4.5 4.0 4.6 3.8 4.5 4.2 4.5 4.5 4.6 
4.1 4.9 4.6 5.5 5.3 4.8 6.0 4.8 4.8 3.9 3.7 4.8 3.0 4.8 4.2 4.0 4.8 4.3 
(8) (9) (7) (0) (2) (0) (2) (8) (2) (7) (1) (1) (1) ~ )  (1) (5) (1) (5) 

19 1.8 1.8 1.4 2.1 2.2 1.9 2.0 1.4 2.1 1.7 1.6 1.8 1.4 1.8 1.8 1.7 1.7 1.8 
2.0 2.3 1.4 2.1 1.8 2.1 1.9 1.1 2.0 1.9 1.9 1.5 1.1 1.7 1.3 2.1 1.7 2.1 
(2) (7) (3) (1) (10) (3) (5.5) (2) (3) (6) (5.5) (8) (0) (6) (5) (8) (0) (6) 

20 3.8 3.9 3.6 4.0 4.0 4.0 4.0 3.6 4.1 3.7 3.8 3.9 3.6 3.9 4.0 3.8 3.8 3.8 
3.6 3.8 3.5 3.4 3.9 4.3 4.4 4.7 4.2 4.1 3.6 3.9 3.9 4.1 3.4 3.4 3.5 3.7 
(2) (2) (3) (13) (5) (1) (4) (17) (3) (9) (0) (1) (7) (2) (12.5) (3.5) (3) (0) 
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Table 6 (continued) 

Location Genotype 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 

21 2.7 2.3 1.6 3.4 3.9 2.8 3.2 2.0 3.1 2.5 1.7 2.6 1.6 2.4 1.9 2.5 2.5 2.6 
2.9 2.6 1.4 3.1 3.4 2.6 3.2 2.0 3.6 3.0 2.4 1.6 1.1 3.0 1.0 3.5 2.4 2.4 
(2) (4) (1) (3) (2) (5) (1) (0) (3) (2) (3) (7) (1) (6) (3) (8) (0) (5) 

22 2.7 2.6 2.0 3.1 3.3 2.8 2.9 2.2 3.0 2.5 2.2 2.7 2.1 2.6 2.4 2.5 2.5 2.6 
3.2 2.1 2.6 3.0 2.8 2.3 3.6 2.2 3.0 3.1 2.0 3.1 2.2 2.3 2.0 2.7 2.2 2.4 
(4) (6) (9) (3) (6) (7) (3) (1) (3) (10) (2) (3) (4) (2) (4) (3) (2) (2) 

23 1.0 1.3 1.0 1.0 1.0 1.2 1.1 0.9 1.2 0.9 1.2 1.2 1.1 1.3 1.4 1.0 1.1 1.1 
0.8 1.3 0.7 0.7 1.0 0.8 1.0 1.0 1.3 1.3 1.4 1.2 1.1 1.i 1.2 1.5 1.5 1.0 
(3) (4) (4) (5) (2) (8) (0) (5) (0) (13) (1) (2) (2) (6) (6) (14) (7) (2) 

24 3.9 4.0 3.6 4.1 4.2 4.1 4.1 3.6 4.2 3.8 3.8 4.0 3.6 4.0 4.0 3.9 3.9 3.9 
4.1 4.3 3.9 4.6 4.0 4.1 4.5 3.5 3.9 3.8 3.7 3.9 3.9 3.9 3.7 4.0 3.5 3.5 
(6) (5) (9) (2) (6) (0) (2) (0) (10) (1) (1) (1) (5) (4) (6) (7) (4) (7) 

25 5.7 5.0 4.2 6.6 7.2 5.8 6.3 4.8 6.2 5.5 4.3 5.4 4.1 5.1 4.5 5.4 5.3 5.5 
6.7 4.9 4.4 6.5 7.5 5.4 5.7 5.6 6.4 5.5 4.0 5.2 3.6 4.7 5.2 4.5 6.0 5.2 
(4) (0) (1) (1) (0) (4) (3) (7) (0) (0) (1) (2) (0) (2) (3) (5) (6) (3) 
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Fig. 2. Stratified ranking analyses of three selected genotypes for 
unadjusted means and AMMI1 estimates over all locations, giv- 
ing number of locations for which a genotype occurred in the 
top, middle, and bottom third of entries 

top-ranking genotype in over half the locations. AMMI1 
estimation was recommended, since ranking discrepan- 
cies between AMMI1 estimates and unadjusted means 
were attributable to random statistical variation. 

Figure 2 presents three contrasting genotypes and 
shows that A M M I I  estimation had a profound effect, 
producing sharper, stratified ranking patterns. Aga/3 * Yr 
was generally in the bot tom third using unadjusted 
means, but also occurred three times in the top and six 

times in the middle. With AMMI1 estimates, it was al- 
ways in the bot tom third. Seri 82 was often in the top, but 
eight times in the middle and five times in the bottom, for 
unadjusted means. The pattern for Seri 82 using AMMI1 
estimates was 21, four, and zero occurrences in the top, 
middle, and bottom, respectively. Glennson 81 was fre- 
quently in the middle in the unadjusted analysis, but was 
also in the top third six times and in the bottom, five 
times. AMMI1 estimates always placed it in the middle. 
It appeared that, without A M M I  estimation, noise in the 
data partially blurred adaptation patterns of genotypes 
to the extent that a relatively well-adapted genotype fell 
by chance in the middle and bot tom several times. Con- 
versely, a relatively poorly adapted line sometimes oc- 
curred at the top for the same reason. 

The distribution of differences between unadjusted 
genotype x location mean yields and their corresponding 
AMMI1 estimates was plotted for locations and geno- 
types. It revealed that differences followed a relatively 
even pattern throughout  the data matrix, without large 
changes focused on a few genotypes or locations. This 
even pattern seemed consistent with the idea of a general 
noise reduction in the data matrix, while a centering of 
changes may have suggested an oversimplification by the 
model in not accounting for atypical genotypes or loca- 
tions. 

A M M I  analysis provides a graphical representation 
(or biplot, Fig. 3) to summarize information on main ef- 
fects and interactions (PCA 1) of both genotypes and en- 
vironments simultaneously (Kempton 1984). In the cur- 
rent study, displacement along the abscissa reflected 
differences in main effects, whereas displacement along 
the ordinate exhibited differences in interaction effects. 
For  example, sites TC and M G  differed in main effect but 
not in interaction, whereas TC and K N  had similar main 
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effects but different interaction with genotypes. Sites TC 
and MS differed in both main effects and interaction. 

The AMMIl-estimated yield for any genotype in any 
location may be calculated from the biplot (Fig. 3), as 
described by Zobel et al. (1988). The biplot captured 96% 
of the treatment SS. Genotypes with PCA 1 scores near 
zero had little interaction across environments (and, like- 
wise, locations with PCA 1 scores near zero had little 
interaction across genotypes and low discrimination 
among genotypes). For such genotypes, overall mean 
rankings were fairly reliable, whereas for genotypes with 
large PCA 1 scores (either positive or negative) overall 
rankings were less reliable. Genotype and location com- 
binations with PCA 1 scores of the same sign produced 
positive specific interaction effects, whereas combinations 
of opposite sign had negative specific interactions. 

Cluster analysis 

Locations were clustered using the AMMIl-estimated 
values of 18 genotypes as attributes and, conversely, the 
genotypes were grouped using the AMMIl-estimated 
values of 25 locations as attributes. Figure 3 shows: (1) 
the biplot with unadjusted main effects of genotypes and 
locations on the abscissa and the AMMI interaction 
PCA 1 on the ordinate, and (2) the superimposed group- 

ing of genotypes (unbroken lines) and locations (dashed 
lines) from cluster analysis using AMMI1 estimates. Also, 
superimposed on the biplot (Fig. 3) is the more intuitive 
grouping of locations (shaded regions) by CIMMYT 
breeders. 

The largest location subgroup (Group 1) comprised 
16 locations: 12 with positive first principal components 
plus Njoro in Kenya (KN), Madaba in Jordan (JM), Serif 
in Algeria (AS), and Islamabad in Pakistan (PI) with 
small negative values for PCA 1. Group 2 included the 
nine locations with the largest negative first PCA scores. 

In location Group 1, Bhairahwa in Nepal (NB), Ayub 
and Islamabad in Pakistan (PA and PI), Joydebpur in 
Bangladesh (B J), and Delhi and Ludhiana in India (ID 
and IL) represent the Indian subcontinent, where wheat 
is grown in rotation with rice and yields are frequently 
limited by terminal heat stress after a short growing cycle. 
The separation of PI from the other subcontinent loca- 
tions was probably due to its high stripe-rust incidence. 

Also in Group 1, Chiang Mai in Thailand (TC) is a 
location in the lowland tropics with high relative humid- 
ity and heat stress, while Njoro in the tropical highlands 
of Kenya experiences high diurnal temperature fluctua- 
tions. Three of the four sites in Spain - C6rdoba, Jerez, 
and Sevilla (SC, S J, and SS) - were tightly grouped. The 
separation into Group 2 of Encinar (SE) in Spain can be 
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explained by higher rainfall and associated attacks of 
powdery mildew and septoria tritici blotch. Higher dis- 
ease pressure differentiated the germplasm differently 
from the other three locations, as seen from the first 
principal component axis, but was not severe enough to 
prevent the location mean yield from reflecting increased 
rainfall. 

Separation between the two Algerian locations, Setif 
(AS) and E1 Khroub (AK), might have been due to differ- 
ences in growing cycle duration and precipitation (AK - 
597 mm, AS - 354 mm). At Setif, average mature plant 
"height was 77 cm. Such short stature usually indicates 
severe environmental stress, probably drought. The 
higher altitude of setif also produces cold stress. 

Three Mexican locations that differed in main effects 
and interaction also joined Group 1. Guanajuato, Sono- 
ra, and Michoacfin (MG, MS, and MM) are irrigated, 
high-yielding environments with a shorter growing cycle 
than occurs in Spain and North Africa. The difference in 
PCAI between Michoac/m and Guanajuato versus 
Sonora may be explained by elevation and latitude. MM 
and MG [1,517 and 1,765 m above sea level (masl)] at 20 ~ 
and 21~ respectively, are cooler than MS, which is an 
irrigated desert environment with an elevation of 38 masl 
at 27~ 

In Group 2, three locations from the Nile Valley of 
Egypt - El Gemmeiza, Sakha, and Beni-Suef (EG, ES, 

and EB)-  occurred with Riyadh in Saudi Arabia (SR) and 
Gezira in Sudan (SG) with a negative PCA 1. All are 
irrigated, but heat stress may have differentiated SR and 
SG from the environment found in the Nile Valley in 
Egypt. 

Clustering of genotypes (Fig. 3) showed three major 
subgroups. The first included four closely related, high- 
yielding genotypes with high positive values for PCA 1. 
Two were Kauz sister lines (genotypes 4 and 5) and two, 
Veery sister lines, Genaro 81 and Seri 82 (genotypes 7 
and 9). Kauz was developed from the cross Jup/Bjy//Ures 
(Ures being another Veery, closely related to Genaro 81) 
and is phenotypically very similar to Genaro 81. 

The second subgroup consisted of nine genotypes (1, 
2, 6, 10, 12, 14, 16, 17, 18) with intermediate positive and 
negative first PCA scores. 

Five genotypes with negative values for the first PCA 
comprised the third subgroup of later-maturing geno- 
types (3, 8, 11, 13, 15). Genotype 8, the earliest-maturing 
entry in the nursery, was an exception and appeared a 
distant member of the third group. It was the only two- 
gene dwarf in the trial and showed the highest susceptibil- 
ity of any genotype to stripe rust. 

The general lateness of subgroup 3 genotypes was 
consistent with their negative interaction with Indian 
subcontinent locations, where earliness is sought. The 
apparent anomaly of the positive interaction of these 
later entries with locations subject to severe environmen- 
tal stress, e.g. heat stress at SG and SR, may be explained 
by lateness providing some check against bolting. The 
latest genotype matured in 110 days at SG. 

In general, the main effects axis of the biplot diagram 
reflected the overall quality for locations and general 
breeding status for genotypes, whereas the interaction 
axis discriminated early (positive PCA scores) to late 
(negative PCA scores) maturing genotypes and, corre- 
spondingly, the lengths of growing season of locations. 

The advantage of superimposing clustering on the 
biplot was that subgroups were delineated clearly. The 
genotypic subgroup with the highest positive PCA1 
values (4, 5, 7, 9) and some genotypes from the subgroup 
with intermediate positive values of PCA 1 (1, 6, 10, 16, 
18) had positive interactions with most Group 1 loca- 
tions, except KN, JM, AS, and PI. 

Nine Group 2 locations with the lowest negative 
PCA 1 scores showed positive, specific interactions with 
genotypes 2, 3, 8, 11, 13, 14, and 15. 

Figure4 presents stratified ranking patterns for 
K a u z # 2  and Hahn*2/Prl  using AMMI1 estimates, 
first for the 25 locations and then individually for 
location Groups 1 and 2. They showed a similar overall 
pattern, but K a u z # 2  was well adapted to location 
Group 1 and relatively poorly adapted to Group 2. 
Hahn* 2/Prl showed the opposite trend. These results 
confirm the interaction patterns inferred from Fig. 3. 
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Cluster analysis performed on unadjusted mean 
values formed slightly different groups of locations and 
genotypes: (1) Madaba in Jordan (JM) was located in 
environment group 2; (2) genotypes 7 and 9 joined the 
subgroup with intermediate positive and negative first 
PCA scores; and (3) genotype 8 was a single-member 
group. Using AMMI1 estimates as input to cluster anal- 
ysis, groups of genotypes and locations were more cohe- 
sive, leading to clearer explanations of response patterns. 
Clusters based on AMMI1 estimates and unadjusted 
means were different because, as mentioned, AMMII  es- 
timated values differed from unadjusted data by a root 
mean square residual of 464 kg/ha. 

While concurrence among the AMMI biplot, cluster 
analysis, and CIMMYT breeders' location grouping was 
imperfect, the fact that three schemes could be super- 
imposed is significant. Figure 3 provided a powerful tool 
for agronomic and biological interpretation of such a 
large data set. 

Stability analysis 

For location Group 1, Westcott's (1987) spatial technique 
using AMMI1 estimates indicated that the Kauz lines 
(genotypes 4 and 5) and Seri 82 (genotype 9) were outliers 
in all cycles and thus represented the most stable geno- 
types. They were the highest-yielding genotypes in most 
Group I locations, with K a u z # 2  first in all but one. 
Genaro 81 also showed a stable pattern but, being closer 
to the center of the diagram in most cycles, did not equal 
the Kauz lines and Seri 82. 

Rather than include a large number of scattergrams 
(one for each cycle in each location group), only one 
three-dimensional plot associated with the analysis for all 
locations in Group I is presented in Fig. 5. Regardless of 
the direction of their separation from the center, the Kauz 
lines and Seri 82 are outliers. Genaro 81 was closer to the 
center of the plot. 

Results of the stability analysis across nine Group 2 
locations using the spatial model showed genotypes 2, 11, 
14, and 15 to be outliers in all diagrams and, thus, the 
most stable. Hahn*2/Pr l  (genotype 15) was the highest 
yielder in all nine environments. 

Discussion 

The primary aim of multilocation trials in plant breeding 
is to estimate genotypic yields. One obstacle in this esti- 
mation is noise and error in field data. 

Empirically, the noise in the AMMI analysis is quan- 
tified by the residual SS after adjusting for the best predic- 
tive model, whereas the error is estimated by the differ- 
ences among individual experimental units (replicates) 
with the same treatment (genotype x location combina- 
tion). In Table 5, the residual term could be thought of as 
corresponding to noise, which is extractable by AMMI 
analysis from the genotype x environment SS and, in the 
same vein, the error term could be described as that error 
variation which is extractable by the randomized com- 
plete block design. This does not imply, however, that 
these or any other sources of variation are free of error 
and noise. 

From a practical viewpoint, a precise distinction be- 
tween noise and error is difficult. Nonuniformity in irri- 
gation, application of agrochemicals, insect and animal 
damage, and disease inoculum load contribute to unde- 
sired variation, as do heterogeneous soils and impreci- 
sion in field operations. Statistically, the degree to which 
this can be accounted for in the replicate, incomplete 
block, error, residual, or other term in an analysis of 
variance depends on the appropriateness of (1) the exper- 
imental design, and (2) the statistical analysis. 

Three basic types of error control strategies exist for 
increasing the accuracy of genotypic yield estimates: (1) 
partitioning error variation, (2) partitioning genotypic 
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variation, and (3) partitioning genotype x location varia- 
tion. The first uses incomplete block designs in the form 
of lattices (Yates 1936) or generalized lattices (Patterson 
et al. 1978), which remove interblock variation from ex- 
perimental error. The second approach includes spatial 
methods (neighbor analysis) to adjust for soil fertility 
trends (Wilkinson et al. 1983; Besag and Kempton 1986). 
Both strategies relate to experimental design. In contrast, 
the AMMI model removes residual or noise variation 
from genotype x location interaction. 

Because these three error control strategies are ap- 
plied to different and orthogonal sources of variation 
(error, genotypes, and interaction), they can be used inde- 
pendently or simultaneously. Despite the fact that practi- 
cal complementarity of these error control strategies 
requires investigation, it can be postulated that, for ap- 
propriately planned trials, more accurate yield estimates 
would be obtained by integrating the three approaches. 
Effective methods for adjusting treatment means, demon- 
strated empirically to improve predictive success, may 
become increasingly important given a trend towards 
fewer replicates and more locations (Bradley et al. 1988). 

The sequence of statistical procedures used in this 
study features the third strategy, AMMI analysis, as a 
first step. This improved the predictive accuracy of the 
eighth ESWYT trial by separating pattern from non- 
systematic variation. 

A significant feature of AMMI analysis is that adjust- 
ment is carried out using information from other loca- 
tions to refine the estimates within a given location, 
whereas the other strategies pertain to an intralocation 
adjustment, i.e., one location has no influence upon the 
adjustment at another. Gauch (1990) suggests that this is 
one of the reasons why AMMI estimators may be more 
predictively accurate than treatment means. AMMI 
models consider all R G L  observations (R replicates, G 
genotypes, and L locations), whereas treatment means 
focus exclusively on R replicates and disregard the other 
R (GL - 1) observations. The second reason relates to the 
Stein effect, which indicates that a small sacrifice in bias, 
in this case using AMMI estimators instead of unbiased 
treatment means, can produce a gain in accuracy. Gauch 
(1990) provides detailed theoretical bases for both these 
factors, which relate to predictive accuracy of AMMI 
estimators. 

From a biological standpoint, one outlying location 
dominated by a stress (i.e., toxic levels of soluble alu- 
minum in the soil) among several other locations without 
such a problem could be overridden by a relatively 
coordinated message or pattern coming from the other 
locations. The majority of associated and biologically 
meaningful genotype x location interactions would be 
relegated to the residual term of the AMMI analysis. 
However, even distribution of AMMI adjustments 
through the eighth ESWYT data matrix, without large 

changes centered on a minority of genotypes or locations, 
allayed fear of such oversimplification. Nonetheless, risk 
of oversimplification should be recognized. With regard 
to the question of the range over which AMMI will func- 
tion, it is recommended that an examination of the distri- 
bution of changes due to AMMI estimation should be 
routinely conducted. 

The CIMMYT Wheat Breeding Program has classi- 
fied major agroclimatic areas of wheat production mainly 
based on climatic conditions, foliar disease complexes, 
and soil type (Rajaram et al. 1984). Even though based on 
one year's data, the biplot and cluster analyses appeared 
reasonably congruent with the breeders' grouping. 

Integration of the analyses was useful for interrelating 
the different objectives of multilocation trials: (1) to assess 
the success of yield prediction; (2) to group sites for 
breeding; and (3) to interpret genotype x environment 
interaction. Results suggested that definition of sub- 
groups of locations for which specifically improved lines 
could be developed is feasible, with K a u z ~ 2  and 
Hahn* 2/Prl demonstrating superiority for specific sub- 
groups of locations. Seri 82, however, was the most 
broadly adapted genotype in the trial, and the extent to 
which a breeder should capitalize on specific interactions 
between genotypes and subsets of locations, at the ex- 
pense of aiming for broader adaptation, will depend 
upon the degree to which the demonstrated relationships 
among locations are repeatable across years. 
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