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Summary. Multilocation trials are important for the
CIMMYT Bread Wheat Program in producing high-
yielding, adapted lines for a wide range of environments.
This study investigated procedures for improving predic-
tive success of a yield trial, grouping environments and
genotypes into homogeneous subsets, and determining
the yield stability of 18 CIMMYT bread wheats evaluat-
ed at 25 locations. Additive Main effects and Multiplica-
tive Interaction (AMMI) analysis gave more precise esti-
mates of genotypic yields within locations than means
across replicates. This precision facilitated formation by
cluster analysis of more cohesive groups of genotypes and
locations for biological interpretation of interactions
than occurred with unadjusted means. Locations were
clustered into two subsets for which genotypes with pos-
itive interactions manifested in high, stable yields were
identified. The analyses highlighted superior selections
with both broad and specific adaptation.
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Introduction

The Bread Wheat Breeding Program of the International
Maize and Wheat Improvement Center (CIMMYT) aims
to develop widely adapted, high-yielding, stable germ
plasm with adequate industrial quality and resistance to
combinations of disease and abiotic stresses (Rajaram
et al. 1984). Cooperative multilocation trials, managed by
national programs, are fundamental in developing and
identifying such germplasm.

* To whom correspondence should be addressed

Interpretation of performance of a number of geno-
types evaluated in a broad range of environments is al-
ways affected by genotype x environment interaction
(GE). Differential genotypic responses to variable envi-
ronmental conditions, especially associated with changes
in ranks of genotypes, limit accurate yield estimates and
identification of superior, stable genotypes.

Regression and other methods for partitioning the GE
interaction sum of squares are discussed by Gauch (1988).

In multivariate analysis, the response of a genotype in
E different environments may be conceptualized as a pat-
tern in E dimensional space, with the coordinate of an
individual spatial axis being the yield of the genotype in
one environment.

Multivariate methods can facilitate interpretation
of multilocation genotype trials. Ordination techniques
such as principal components analysis, principal coordi-
nates analysis, and factor analysis often present a large
percentage of the original E dimensional variation in a
few dimensions, and thus may simplify interpretation of
GE structure. Often, complex relationships among loca-
tions or among genotypes can be adequately represented
in a scattergram (Freeman and Dowker 1973; Westcott
1987). Alternatively, cluster analysis has been used to
group locations that discriminate among genotypes in
a similar manner or to summarize patterns of genotypic
performance across environments (Abou-El-Fittouh et al.
1969). The combination of ordination and cluster analy-
sis is termed pattern analysis (Byth et al. 1976; Shorter
et al. 1977).

The Additive Main effects and Multiplicative Inter-
action (AMMI) procedure with prediction assessment
was proposed for analysis of two-way tables (Gauch
1988; Gauch and Zobel 1988). The method integrates
additive main effects and multiplicative components, ex-
tracting first the additive main effects and then using
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principal components analysis to investigate the GE.
With the biplot facility from AMMI analysis, both geno-
types and locations occur on the same scattergram, and
inferences about specific genotype x location combina-
tions can be made. In plant breeding, the method has
focused upon accuracy of estimates of genotypic yields in
across-location trials. This has been referred to as yield
prediction assessment and functions by splitting the data
into modelling and validation data, with the values ex-
pected by the model compared with the validation data
(Gauch and Zobel 1988).

In this study, complementary statistical procedures
were applied to a hexaploid wheat (Triticum aestivum L.
em Thell.) yield trial to: (1) assess the success of genotyp-
ic yield prediction, (2) form homogeneous subgroups of
locations and genotypes, and (3) identify stable, high-
yielding genotypes.

Materials and methods

Grain yield data were analyzed from the eighth Elite Selection
Wheat Yield Trial (ESWYT) in which 18 bread wheat genotypes
(Table 1) were tested under rain-fed and irrigated conditions. A
total of 25 locations spanning 15 countries was used (Table 2). A
randomized complete block design with three replicates was
employed, and the plot size recommended to cooperators was six
3-m rows sown 30 cm apart, with the central four rows harvest-
ed. Variable local checks, which were not always identified, and
the tetraploid durum wheat check were excluded.

Statistical analysis

AMMI analysis. For genotypic yields in across-location trials,
prediction assessment was conducted using the AMMI method
(Bradu and Gabriel 1978; Gauch 1988; Gauch and Zobel 1988).
The AMMI model is

Y= u+gi+lj+k§1 A Oy Vit Eg s
where Y;; is the yield of the i** genotype in the j™ environment;
u is the grand mean; g; and [; are the genotype and location
deviations from the grand mean, respectively; 4, is the eigen-
value of the principal component analysis axis k; a; and y,, are
the genotype and location principal component scores for axis k;
n is the number of principal components retained in the model;
and E;; is the error term.

Data were split into two subgroups: modelling and valida-
tion data. For each combination of genotype and location, two
randomly chosen replicates were used to estimate parameters of
the AMMI model, and the other replicate was used to validate
the model. Seven models were fitted to the data. The first was the
AMMIO model, which estimated the additive main effects (i.e.,
genotypes and locations) without considering interaction; the
second, AMMI1, combined the main effects from AMMIO with
interaction effects estimated from the first interaction principal
component axis (PCA 1). The third model, AMMI?2, considered
main effects plus two interaction principal components. AMMI3 —
AMMIS5 included cumulatively one more interaction principal
component axis. The seventh model (DATA) with 17 PCA axes
was the full model, which completely specified the data matrix
and equalled the average of the two replicates selected at random
for modelling.

Table 1. Genotypes of the eight ESWYT

Number Cross or name
1 PRL/VEE #6
2 CNO0O79*2/PRL
3 BUC/GLEN
4 KAUZ#1
5 KAUZ#2
6 RRV/WW15/3/BJ/2*ON//BON/4/NAC
7 GENARO 81
8 AGA/3*YR
9 SERI 82
10 BUC/PVN
11 KEA/TOW
12 GLENNSON 81
13 MON/CROW
14 BIY/COC
15 HAHN*2/PRL
16 R37/GHL121//KAL/BB/3/KLT
17 VEE#5/PVN
18 HD2206/HORK

Table 2. Locations from the eighth ESWYT

Code Country Location Latitude  Elevation
(°N) (masl)
AK Algeria El Khroub 36 640
AL Algeria Setif 36 1,023
BJ Bangladesh  Joydebpur 24 8
CA Cyprus Athalassa 35 142
EG Egypt El Gemmeiza 31 8
ES Egypt Sakha 31 6
EB Egypt Beni-Suef 29 28
1L India Ludhiana 31 247
1D India Delhi 29 228
M Jordan Madaba 36 785
KN Kenya Njoro 0 2,165
MG Mexico Guanajuato 21 1,765
MS Mexico Sonora 27 38
MM Mexico Michoacan . 20 1,517
NB Nepal Bhairahwa 27 105
PI Pakistan Isilamabad 34 683
PA Pakistan Ayub 32 213
SR Saudi Arabia Riyadh 24 600
SG Sudan Gezira 14 411
SE Spain Encinar 38 20
SJ Spain Jerez 37 180
SC Spain Cordoba 38 110
SS Spain Sevilla 38 20
TB Tunisia Beja 37 150
TC Thailand Chiang Mai 18 820

Concepts of data division or cross-validation are presented
for multiple regression by Allen (1971) and Snee (1977), and for
principal components analysis by Wold (1978) and Krzanowski
(1983).

Cross-validation, used in AMMI to measure the success of
the models, computed the sum of squared differences (SSD) be-
tween the models’ fitted values and the validation data. The root
mean square predictive difference (RMS PD) was the square root
of SSD divided by the number of validation obscrvations.
Smaller values of RMS PD indicated more accurate prediction.
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This procedure was repeated using ten different random selec-
tions of replicates from the genotype X location matrix, and the
average RMS PDs over the ten randomizations were calculated
for each model.

On the basis of RMS PD, the best model was identified.
Finally, AMMI estimates for all genotype by location combina-
tions were generated using this model with three replicates
(Fig. 1).

AMMI analysis constituted a preliminary investigation,
providing predictively accurate yield estimates for input into
cluster and stability analysis.

Average rank difference. Genotypes at each location were ranked
on the basis of their yields. For the i* genotype in the j* location,
the absolute value of the rank difference (RD) between any two
predictive models, e.g. x and y, was defined as

RDij = (le_Ry DU 3

where R, and R were the ranks of models x and y, respectively.
Then, the average rank difference (ARD) between models x

and y for all genotypes and locations was:

ARD,, =[z’ 5 RD,-j:|/n,-nj ,

i=1 j=1

ARny = |:i§1 jgl (|Rx—Ry |)ij]/ni nj ’

where n, and n; were the numbers of genotypes and locations,
respectively.

Cluster analysis. Locations and genotypes were clustered using
the HACLUS program from the University of Queensland, with
a dissimilarity matrix of squared Euclidean distance and an in-
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cremental sum of squares fusion strategy (Burr 1970). The first
two entities to fuse minimize the increment in the within-group
sum of squares. This process repeats for the second and subse-
quent fusions so that, at any level of the hierarchy, the within-
group sum of squares is a minimum. Location main effects were
removed prior to clustering locations by standardizing the data,
so that each location had a mean of zero and a phenotypic
standard deviation of one (Fox and Rosielle 1982). This caused
location clusters to be largely determined by the relative perfor-
mance of genotypes within locations and was judged the appro-
priate transformation for plant breeding purposes.

Stratified ranking. The stratified ranking technique of Fox et al.
(1990) was applied to unadjusted means and AMMI estimates.
The procedure consisted of scoring the number of locations in
which each genotype ranked in the top, middle, and bottom
third of trial entries.

Stability analysis. A spatial model proposed by Westcott (1987)
and applied to international maize trials (Crossa 1988; Crossa
et al. 1988a, b; Crossa et al. 1989) was used.

The spatial method was used for assessing genotypic stabil-
ity within the two major groups of locations obtained from
cluster analysis. Locations were ranked in descending order of
mean yields. For characterizing genotypic stability, principal
coordinates analysis was performed in cycles. The first cycle
(cycle 1) included the lowest yielding location, the second cycle
(cycle 2) included the two lowest yielding locations, and so on,
terminating with the final analysis based upon all locations in
the group. For each cycle, a three-dimensional scattergram of
principal coordinate axes represented the relationships among
the genotypes.

Wescott’s (1987) measure of similarity between two geno-
types X and Y, in a given location i is

S{XY) = [H~(X;+ )2/ H,~ L,

where H, is the highest yielding genotype in location i, L; is the
lowest yielding genotype in location i, and X; and Y, are the
performances of genotypes X and Y in location i, respectively.
For more than one location, the similarity between genotypes X
and Y is the average of S,(XY) across locations. This measure of
similarity between any pair of genotypes indicates their average
proximity to H,. The analysis determines a point at the center of
the scattergram with a maximum value for S. High-yielding
genotypes are close to H,, have small values for S, and are
represented by points further from the center of the scattergram
(Crossa 1988). In contrast, low-yielding genotypes are far from
H,, have large values for S, and are represented by points near
the center of the scattergram.

Genotypes that consistently show above average perfor-
mance throughout the cycles occupy the periphery of the scatter-
grams. These outliers are the most stable genotypes, even though
they may occupy different positions in three-dimensional space.
Genotypes with below average performance are represented by
points that tend towards the center.

Results

AMMI analysis

All models fitted approached the validation data more
closely than the mean of the two modelling replicates
(Table 3). The AMMI1 model showed the least deviation
from validation data (RMS PD of 818 kg/ha), thus
providing the best estimates.
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Table 3. The average RMS PD (kg/ha) for seven models based
on ten randomizations

Model RMS PD
AMMIO 829
AMMI1 818
AMMI2 839
AMMI3 850
AMMI4 855
AMMI3 862
DATA 885

Table 4. Estimated differences in RMS PD and ARD among
several predictive models and their rank correlations over 18
genotypes and 25 locations

Models RMS PD ARD Rank correlation
AMMIO-AMMI1 11 2.88 0.92
AMMII-AMMI2 21 2.20 0.94
AMMI2-AMMI3 11 1.45 0.95
AMMI3-AMMI4 5 1.51 0.96
AMMI4-AMMIS 7 1.44 0.96

Table 5. AMMI analysis of variance of the eighth ESWYT

Source of variation df SSx 105 MSx10®
Replicates within L 50 96 1,927
Treatment 449 7,551 16,819 **
Model 81 7,262 89,656 **
Location (L) 24 7,100 295,871 **
Genotype (G) 17 54 3,160 *#*
Interaction PCA 1 40 108 2,687 **
Residual 368 290 787**
Error 850 372 438

** Significant at 0.01 probability level

Changes in RMS PD and in ARD with successive
addition to the number of principal components axes
modelled, from zero to five, was quantified (Table 4). Al-
though the largest change in RMS PD did not occur
between AMMIO and AMMII, the greatest effect on
ranking was observed here, paralleled by the fact that
AMMIO and AMMI1 exhibited the lowest Kendall’s Tau
rank correlation (Knight 1966). Changes in the ARD did
not seem related to changes in RMS PD. The stratified
ranking procedure presented below showed distinctly
different genotypic rankings between location groups
using AMMI1 estimates, whereas for the AMMIO model,
which does not accommodate interaction and rank
change, each location would order genotypes identically.
Thus, moving from the AMMIO to the AMMI1 model
has important implications for selecting genotypes. Over-
all, successive addition of axes, after the first which ac-
counts for the largest fraction of GE variation, showed a
diminishing effect on ranking. Increasing rank correla-

tions between consecutive models, from AMMI1 on-
wards, reflected this trend.

A significant feature of multivariate models, including
AMMI analysis, is that they account for a large propor-
tion of pattern in the first few dimensions, with subse-
quent dimensions accounting for a diminishing percent-
age of pattern and an increasing percentage of noise
(Gauch 1982, 1988). Often, arbitrary decisions are taken
with respect to the number of dimensions considered.
However, the RMS PD provided an objective basis for
the decision. Our a priori expectations were that higher
interaction PCA axes would contribute to genotypic
yield prediction, but to a negligible degree above a certain
number of axes. However, the poorer fit to validation
data of models involving higher PCA axes (AMMI2 to
AMMIS, Table 3) suggested that they involve noise, and
not highly complex interaction among genotypes and
locations. Noise, or nonsystematic components, of the
genotype x location interaction reduced the accuracy of
estimates and were thus considered residual variation,
even though the axes involved may have been statistically
significant using an F-test.

In the AMMI analysis of variance using three repli-
cates (Table 5), the treatment sum of squares (SS) was
partitioned into two components: 96% due to the model
or pattern (including main effects for genotypes and loca-
tions and the first interaction PCA) with 81 df, and 4%
residual or random variation (noise) with 368 df. The
model-validation procedure (Table 3) indicated that the
4% of the treatment SS allocated to the residual term was
not of predictive value.

The root mean square residual (or adjustment) for R
replicates, L locations, and G genotypes was Residual
SS/RLG =464 kg/ha or 10% of the grand mean (Table 5).
This is a measure of the departure of AMMI1 estimates
from the means across replicates.

The AMMI1 estimates from two replicates were more
accurate than the unadjusted means of those replicates.
For three replicates, the prediction accuracy could not be
measured empirically since no validation data remained.
However, it was assumed that AMMI1 estimates based
on three replicates were more accurate than those based
on two replicates. The effect of the AMMI estimates on
genotypic means was assessed.

Within locations, AMMII frequently ranked geno-
types differently than unadjusted means (Table 6), and in
18 of the 25 cases AMMIN1 estimation changed the top-
yielding entry. For unadjusted means, 13 genotypes were
top yielders in at least one location. With AMMI1 esti-
mates there were only three top yielders, Kauz#2,
Seri 82, and Hahn + 2/Prl, suggesting that noise in unad-
justed means elevated some genotypes to first position.

Studies in maize (Crossa et al. 1990) and soybean
yield trials (Gauch and Zobel 1989) also showed that
AMMI1 estimates and unadjusted means led to a different
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Table 6. AMMI1 estimates (above), unadjusted means (below), and their rank differences (RD,;) (in parenthesis) for grain yield
(tons/ha) of 18 genotypes grown in 25 locations

Location Genotype

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1 78 82 80 77 75 79 77 77 79 77 83 80 81 82 84 78 79 79
78 83 77 61 81 84 81 88 86 67 79 75 86 71 85 77 91 79
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Table 6 (continued)

Location Genotype

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
21 27 23 16 34 39 28 32 20 31 25 17 26 16 24 19 25 25 26

29 26 14 31 34 26 32 20 36 30 24 16 11 30 10 35 24 24

(2) (4) (1) 3 (2) G O O @ @ (3) n o (6) (3) ® (O (5)
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Fig. 2. Stratified ranking analyses of three selected genotypes for
unadjusted means and AMMI1 estimates over all locations, giv-
ing number of locations for which a genotype occurred in the
top, middle, and bottom third of entries

top-ranking genotype in over half the locations. AMMI1
estimation was recommended, since ranking discrepan-
cies between AMMII estimates and unadjusted means
were attributable to random statistical variation.
Figure 2 presents three contrasting genotypes and
shows that AMMI1 estimation had a profound effect,
producing sharper, stratified ranking patterns. Aga/3 = Yr
was generally in the bottom third using unadjusted
means, but also occurred three times in the top and six

times in the middle. With AMMI1 estimates, it was al-
ways in the bottom third. Seri 82 was often in the top, but
eight times in the middle and five times in the bottom, for
unadjusted means. The pattern for Seri 82 using AMMI1
estimates was 21, four, and zero occurrences in the top,
middle, and bottom, respectively. Glennson 81 was fre-
quently in the middle in the unadjusted analysis, but was
also in the top third six times and in the bottom, five
times. AMMI1 estimates always placed it in the middle.
It appeared that, without AMMI estimation, noise in the
data partially blurred adaptation patterns of genotypes
to the extent that a relatively well-adapted genotype fell
by chance in the middle and bottom several times. Con-
versely, a relatively poorly adapted line sometimes oc-
curred at the top for the same reason.

The distribution of differences between unadjusted
genotype X location mean yields and their corresponding
AMMI1 estimates was plotted for locations and geno-
types. It revealed that differences followed a relatively
even pattern throughout the data matrix, without large
changes focused on a few genotypes or locations. This
even pattern seemed consistent with the idea of a general
noise reduction in the data matrix, while a centering of
changes may have suggested an oversimplification by the
model in not accounting for atypical genotypes or loca-
tions.

AMMI analysis provides a graphical representation
(or biplot, Fig. 3) to summarize information on main ef-
fects and interactions (PCA 1) of both genotypes and en-
vironments simultaneously (Kempton 1984). In the cur-
rent study, displacement along the abscissa reflected
differences in main effects, whereas displacement along
the ordinate exhibited differences in interaction effects.
For example, sites TC and MG differed in main effect but
not in interaction, whereas TC and KN had similar main
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effects but different interaction with genotypes. Sites TC
and MS differed in both main effects and interaction.

The AMMI1-estimated yield for any genotype in any
location may be calculated from the biplot (Fig. 3), as
described by Zobel et al. (1988). The biplot captured 96%
of the treatment SS. Genotypes with PCA 1 scores near
zero had little interaction across environments (and, like-
wise, locations with PCA 1 scores near zero had little
interaction across genotypes and low discrimination
among genotypes). For such genotypes, overall mean
rankings were fairly reliable, whereas for genotypes with
large PCA1 scores (either positive or negative) overall
rankings were less reliable. Genotype and location com-
binations with PCA 1 scores of the same sign produced
positive specific interaction effects, whereas combinations
of opposite sign had negative specific interactions.

Cluster analysis

Locations were clustered using the AMMI1-estimated
values of 18 genotypes as attributes and, conversely, the
genotypes were grouped using the AMMI1-estimated
values of 25 locations as attributes. Figure 3 shows: (1)
the biplot with unadjusted main effects of genotypes and
locations on the abscissa and the AMMI interaction
PCA 1 on the ordinate, and (2) the superimposed group-

ing of genotypes (unbroken lines) and locations (dashed
lines) from cluster analysis using AMMI1 estimates. Also,
superimposed on the biplot (Fig. 3) is the more intuitive
grouping of locations (shaded regions) by CIMMYT
breeders.

The largest location subgroup (Group 1) comprised
16 locations: 12 with positive first principal components
plus Njoro in Kenya (KN), Madaba in Jordan (JM), Setif
in Algeria (AS), and Islamabad in Pakistan (PI) with
small negative values for PCA 1. Group 2 included the
nine locations with the largest negative first PCA scores.

In location Group 1, Bhairahwa in Nepal (NB), Ayub
and Islamabad in Pakistan (PA and PI), Joydebpur in
Bangladesh (BJ), and Delhi and Ludhiana in India (ID
and IL) represent the Indian subcontinent, where wheat
is grown in rotation with rice and yields are frequently
limited by terminal heat stress after a short growing cycle.
The separation of PI from the other subcontinent loca-
tions was probably due to its high stripe-rust incidence.

Also in Group 1, Chiang Mai in Thailand (TC) is a
location in the lowland tropics with high relative humid-
ity and heat stress, while Njoro in the tropical highlands
of Kenya experiences high diurnal temperature fluctua-
tions. Three of the four sites in Spain — Cérdoba, Jerez,
and Sevilla (SC, SJ, and SS) — were tightly grouped. The
separation into Group 2 of Encinar (SE) in Spain can be
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Fig. 4. Stratified ranking analyses of two selected genotypes
using AMMTII1 estimates over all locations and for Groups 1 and
2, giving number of locations for which a genotype occurred in
the top, middle, and bottom third of entries

explained by higher rainfall and associated attacks of
powdery mildew and septoria tritici blotch. Higher dis-
ease pressure differentiated the germplasm differently
from the other three locations, as seen from the first
principal component axis, but was not severe enough to
prevent the location mean yield from reflecting increased
rainfall.

Separation between the two Algerian locations, Setif
(AS) and El Khroub (AK), might have been due to differ-
ences in growing cycle duration and precipitation (AK -
597 mm, AS — 354 mm). At Setif, average mature plant
height was 77 cm. Such short stature usually indicates
severe environmental stress, probably drought. The
higher altitude of setif also produces cold stress.

Three Mexican locations that differed in main effects
and interaction also joined Group 1. Guanajuato, Sono-
ra, and Michoacan (MG, MS, and MM) are irrigated,
high-yielding environments with a shorter growing cycle
than occurs in Spain and North Africa. The difference in
PCA1 between Michoacan and Guanajuato versus
Sonora may be explained by elevation and latitude. MM
and MG [1,517 and 1,765 m above sea level (masl)] at 20°
and 21°N, respectively, are cooler than MS, which is an
irrigated desert environment with an elevation of 38 masl
at 27°N.

In Group 2, three locations from the Nile Valley of
Egypt — El Gemmeiza, Sakha, and Beni-Suef (EG, ES,

and EB)— occurred with Riyadh in Saudi Arabia (SR) and
Gezira in Sudan (SG) with a negative PCA 1. All are
irrigated, but heat stress may have differentiated SR and
SG from the environment found in the Nile Valley in
Egypt.

Clustering of genotypes (Fig. 3) showed three major
subgroups. The first included four closely related, high-
yielding genotypes with high positive values for PCA 1.
Two were Kauz sister lines (genotypes 4 and 5) and two,
Veery sister lines, Genaro 81 and Seri 82 (genotypes 7
and 9). Kauz was developed from the cross Jup/Bjy//Ures
(Ures being another Veery, closely related to Genaro 81)
and is phenotypically very similar to Genaro 81.

The second subgroup consisted of nine genotypes (1,
2,6, 10, 12, 14, 16, 17, 18) with intermediate positive and
negative first PCA scores.

Five genotypes with negative values for the first PCA
comprised the third subgroup of later-maturing geno-
types (3, 8, 11, 13, 15). Genotype 8, the earliest-maturing
entry in the nursery, was an exception and appeared a
distant member of the third group. It was the only two-
gene dwarfin the trial and showed the highest susceptibil-
ity of any genotype to stripe rust.

The general lateness of subgroup 3 genotypes was
consistent with their negative interaction with Indian
subcontinent locations, where earliness is sought. The
apparent anomaly of the positive interaction of these
later entries with locations subject to severe environmen-
tal stress, ¢.g. heat stress at SG and SR, may be explained
by lateness providing some check against bolting. The
latest genotype matured in 110 days at SG.

In general, the main effects axis of the biplot diagram
reflected the overall quality for locations and general
breeding status for genotypes, whereas the interaction
axis discriminated early (positive PCA scores) to late
(negative PCA scores) maturing genotypes and, corre-
spondingly, the lengths of growing season of locations.

The advantage of superimposing clustering on the
biplot was that subgroups were delineated clearly. The
genotypic subgroup with the highest positive PCA1
values (4, 5, 7, 9) and some genotypes from the subgroup
with intermediate positive values of PCA1 (1, 6, 10, 16,
18) had positive interactions with most Group 1 loca-
tions, except KN, JM, AS, and PIL.

Nine Group 2 locations with the lowest negative
PCA 1 scores showed positive, specific interactions with
genotypes 2, 3, 8, 11, 13, 14, and 15.

Figure 4 presents stratified ranking patterns for
Kauz#2 and Hahn=#2/Prl using AMMI! estimates,
first for the 25 locations and then individuvally for
location Groups 1 and 2. They showed a similar overall
pattern, but Kauz#2 was well adapted to location
Group 1 and relatively poorly adapted to Group 2.
Hahn*2/Prl showed the opposite trend. These results
confirm the interaction patterns inferred from Fig. 3.



Axis 3

Cluster analysis performed on unadjusted mean
values formed slightly different groups of locations and
genotypes: (1) Madaba in Jordan (JM) was located in
environment group 2; (2) genotypes 7 and 9 joined the
subgroup with intermediate positive and negative first
PCA scores; and (3) genotype 8 was a single-member
group. Using AMMI1 estimates as input to cluster anal-
ysis, groups of genotypes and locations were more cohe-
sive, leading to clearer explanations of response patterns.
Clusters based on AMMI1 estimates and unadjusted
means were different because, as mentioned, AMMI1 es-
timated values differed from unadjusted data by a root
mean square residual of 464 kg/ha.

While concurrence among the AMMI biplot, cluster
analysis, and CIMMYT breeders’ location grouping was
imperfect, the fact that three schemes could be super-
imposed is significant. Figure 3 provided a powerful tool
for agronomic and biological interpretation of such a
large data set.

Stability analysis

For location Group 1, Westcott’s (1987) spatial technique
using AMMI1 estimates indicated that the Kauz lines
(genotypes 4 and 5) and Seri 82 (genotype 9) were outliers
in all cycles and thus represented the most stable geno-
types. They were the highest-yielding genotypes in most
Group 1 locations, with Kauz#2 first in all but one.
Genaro 81 also showed a stable pattern but, being closer
to the center of the diagram in most cycles, did not equal
the Kauz lines and Seri 82.

Rather than include a large number of scattergrams
(one for each cycle in each location group), only one
three-dimensional plot associated with the analysis for all
locations in Group 1 is presented in Fig. 5. Regardless of
the direction of their separation from the center, the Kauz
lines and Seri 82 are outliers. Genaro 81 was closer to the
center of the plot.
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Fig. 5. Plot of the first three principal axes
from a principal coordinate analysis of a
set of 18 wheat genotypes in all Group 1
locations

Results of the stability analysis across nine Group 2
locations using the spatial model showed genotypes 2, 11,
14, and 15 to be outliers in all diagrams and, thus, the
most stable. Hahn*2/Prl (genotype 15) was the highest
yielder in all nine environments.

Discussion

The primary aim of multilocation trials in plant breeding
is to estimate genotypic yields. One obstacle in this esti-
mation is noise and error in field data.

Empirically, the noise in the AMMI analysis is quan-
tified by the residual SS after adjusting for the best predic-
tive model, whereas the error is estimated by the differ-
ences among individual experimental units (replicates)
with the same treatment (genotype x location combina-
tion). In Table 5, the residual term could be thought of as
corresponding to noise, which is extractable by AMMI
analysis from the genotype x environment SS and, in the
same vein, the error term could be described as that error
variation which is extractable by the randomized com-
plete block design. This does not imply, however, that
these or any other sources of variation are free of error
and noise.

From a practical viewpoint, a precise distinction be-
tween noise and error is difficult. Nonuniformity in irri-
gation, application of agrochemicals, insect and animal
damage, and disease inoculum load contribute to unde-
sired variation, as do heterogeneous soils and impreci-
sion in field operations. Statistically, the degree to which
this can be accounted for in the replicate, incomplete
block, error, residual, or other term in an analysis of
variance depends on the appropriateness of (1) the exper-
imental design, and (2) the statistical analysis.

Three basic types of error control strategies exist for
increasing the accuracy of genotypic yield estimates: (1)
partitioning error variation, (2) partitioning genotypic
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variation, and (3) partitioning genotype x location varia-
tion. The first uses incomplete block designs in the form
of lattices (Yates 1936) or generalized lattices (Patterson
et al. 1978), which remove interblock variation from ex-
perimental error. The second approach includes spatial
methods (neighbor analysis) to adjust for soil fertility
trends (Wilkinson et al. 1983; Besag and Kempton 1986).
Both strategies relate to experimental design. In contrast,
the AMMI model removes residual or noise variation
from genotype x location interaction.

Because these three error control strategies are ap-
plied to different and orthogonal sources of variation
(error, genotypes, and interaction), they can be used inde-
pendently or simultaneously. Despite the fact that practi-
cal complementarity of these error control strategies
requires investigation, it can be postulated that, for ap-
propriately planned trials, more accurate yield estimates
would be obtained by integrating the three approaches.
Effective methods for adjusting treatment means, demon-
strated empirically to improve predictive success, may
become increasingly important given a trend towards
fewer replicates and more locations (Bradley et al. 1988).

The sequence of statistical procedures used in this
study features the third strategy, AMMI analysis, as a
first step. This improved the predictive accuracy of the
eighth ESWYT trial by separating pattern from non-
systematic variation.

A significant feature of AMMI analysis is that adjust-
ment is carried out using information from other loca-
tions to refine the estimates within a given location,
whereas the other strategies pertain to an intralocation
adjustment, i.e., one location has no influence upon the
adjustment at another. Gauch (1990) suggests that this is
one of the reasons why AMMI estimators may be more
predictively accurate than treatment means. AMMI
models consider all RGL observations (R replicates, G
genotypes, and L locations), whereas treatment means
focus exclusively on R replicates and disregard the other
R (GL —1) observations. The second reason relates to the
Stein effect, which indicates that a small sacrifice in bias,
in this case using AMMI estimators instead of unbiased
treatment means, can produce a gain in accuracy. Gauch
(1990) provides detailed theoretical bases for both these
factors, which relate to predictive accuracy of AMMI
estimators.

From a biological standpoint, one outlying location
dominated by a stress (i.e., toxic levels of soluble alu-
minum in the soil) among several other locations without
such a problem could be overridden by a relatively
coordinated message or pattern coming from the other
locations. The majority of associated and biologically
meaningful genotype X location interactions would be
relegated to the residual term of the AMMI analysis.
However, even distribution of AMMI adjustments
through the eighth ESWYT data matrix, without large

changes centered on a minority of genotypes or locations,
allayed fear of such oversimplification. Nonetheless, risk
of oversimplification should be recognized. With regard
to the question of the range over which AMMI will func-
tion, it is recommended that an examination of the distri-
bution of changes due to AMMI estimation should be
routinely conducted.

The CIMMYT Wheat Breeding Program has classi-
fied major agroclimatic areas of wheat production mainly
based on climatic conditions, foliar disease complexes,
and soil type (Rajaram et al. 1984). Even though based on
one year’s data, the biplot and cluster analyses appeared
reasonably congruent with the breeders’ grouping.

Integration of the analyses was useful for interrelating
the different objectives of multilocation trials: (1) to assess
the success of yield prediction; (2) to group sites for
breeding; and (3) to interpret genotype x environment
interaction. Results suggested that definition of sub-
groups of locations for which specifically improved lines
could be developed is feasible, with Kauz#2 and
Hahn = 2/Prl demonstrating superiority for specific sub-
groups of locations. Seri 82, however, was the most
broadly adapted genotype in the trial, and the extent to
which a breeder should capitalize on specific interactions
between genotypes and subsets of locations, at the ex-
pense of aiming for broader adaptation, will depend
upon the degree to which the demonstrated relationships
among locations are repeatable across years.
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